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Abstract

Following a request from the German Federal Institute for Risk Assessment (BfR), the EFSA Panel for
Contaminants in the Food Chain was asked to deliver a statement on the presence of microplastics and
nanoplastics in food, with particular focus on seafood. Primary microplastics are plastics originally
manufactured to be that size, while secondary microplastics originate from fragmentation. Nanoplastics
can originate from engineered material or can be produced during fragmentation of microplastic
debris. Microplastics range from 0.1 to 5,000 lm and nanoplastics from approximately 1 to 100 nm
(0.001–0.1 lm). There is no legislation for microplastics and nanoplastics as contaminants in food.
Methods are available for identification and quantification of microplastics in food, including seafood.
Occurrence data are limited. In contrast to microplastics no methods or occurrence data in food are
available for nanoplastics. Microplastics can contain on average 4% of additives and the plastics can
adsorb contaminants. Both additives and contaminants can be of organic as well of inorganic nature.
Based on a conservative estimate the presence of microplastics in seafood would have a small effect
on the overall exposure to additives or contaminants. Toxicity and toxicokinetic data are lacking for
both microplastics and nanoplastics for a human risk assessment. It is recommended that analytical
methods should be further developed for microplastics and developed for nanoplastics and
standardised, in order to assess their presence, identity and to quantify their amount in food.
Furthermore, quality assurance should be in place and demonstrated. For microplastics and
nanoplastics, occurrence data in food, including effects of food processing, in particular, for the smaller
sized particles (< 150 lm) should be generated. Research on the toxicokinetics and toxicity, including
studies on local effects in the gastrointestinal (GI) tract, are needed as is research on the degradation
of microplastics and potential formation of nanoplastics in the human GI tract.
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Summary

Following a request from the German Federal Institute for Risk Assessment (BfR), the EFSA
Panel for Contaminants in the Food Chain (CONTAM Panel) was asked to deliver a statement on the
presence of microplastics and nanoplastics in food, with particular focus on seafood.

With regard to additives and chemical contaminants, this statement includes information up to the
possible transfer of these substances into edible tissues and an estimation of the human exposure.

Although there is no legislation for microplastics and nanoplastics as contaminants in food, there
are a broad range of European Union (EU) policies and legislation with regard to marine litter, covering
sources and impacts and a number of EU initiatives, relevant to marine litter, including microplastics.

Microplastics

There is no internationally recognised definition of microplastics. For this statement, they are
defined as a heterogeneous mixture of differently shaped materials referred to as fragments, fibres,
spheroids, granules, pellets, flakes or beads, in the range of 0.1–5,000 lm. A distinction can be made
between primary and secondary microplastics. Primary microplastics are plastics that were originally
manufactured to be that size while secondary microplastics originate from fragmentation of larger
items, e.g. plastic debris.

Methods for identification and quantification of microplastics in food, including seafood, have been
reported in literature. However, in some of the studies, quality assurance to avoid contamination from
the air and equipment is not described, and it is not always clear how a particle is identified as being a
‘plastic’. The methods described for microplastics include one or more of the following steps:
(i) extraction and degradation of biogenic matter; (ii) detection and quantification (enumeration); and
(iii) characterisation of the plastic. Some of the described methods for degradation of the biogenic
matter have the drawback that some plastics are degraded to a certain degree. Enumeration is
performed by examining the samples with the naked eye or with the aid of a microscope. In the
literature, microplastics have been classified or named in several ways, including microfibres, film
spherule, and fragment bead, film. Advanced techniques for the characterisation and identification of
the type of plastic are by Fourier transform infrared spectrometry (FT-IR) and Raman spectrometry.
Another technique to obtain structural information of the plastic is pyrolysis-gas chromatography/mass
spectrometry (GC/MS). Identification is performed by comparison with standard spectra or pyrograms
of plastic.

There is no available literature on the fate of microplastics during the processing of seafood.
Humans will most often eat cleaned seafood, e.g. fish, where the gastrointestinal tract (GI) is not
included. As most of the microplastics will be found in the GI tract, gutting will decrease the exposure
compared to eating whole fish. This does not apply to shellfish and certain species of small fish.

Microplastics are likely to originate from other sources than the food itself, e.g. processing aids, water,
air or being release from machinery, equipment and textiles, although there is no available literature on
this issue. It is therefore possible that the amount of microplastics increases during processing. The effect
of other processes, e.g. cooking and baking, on the content of plastics is not known.

Experimental evidence in marine organisms indicates that microplastics have the potential to be
transferred between trophic levels. Fish meal has some use in poultry production and pig rearing,
hence, microplastics may end up in non-marine foods. Limited data are available on the occurrence of
microplastics in foods. Available data are from seafood species, such as fish, shrimp, and bivalves, and
also in other foods such as honey, beer and table salt. In studies where the content of microplastics in
seafood species has been determined, the microplastic content is given in different units, e.g. number
of particles/marine organism or number of particles/g wet weight so it is not always possible to
compare results. The concentration of microplastics in marine species is determined in the stomach, GI
or the whole digestive tract. In fish, the average number of particles found per fish is between 1 and
7. In shrimp, an average of 0.75 particles/g is found. In bivalves, the average number of particles is
0.2–4 (median value)/g. Average content of microplastics reported for honey are 0.166 fibres/g and
0.009 fragments/g. In beer, fibres, fragments and granules have been found at the following amounts
0.025, 0.033 and 0.017 per mL, respectively. For table salts, microplastic content of between 0.007
and 0.68 particles/g have been found.

Microplastics can contain on average 4% of additives and the plastics can adsorb contaminants.
Both additives and contaminants can be of organic as well of inorganic nature and they can be
determined using universally accepted analytical methods. Trophic transfer of contaminants, e.g.
persistent organic pollutants (POPs), has been reported and biomagnification has been shown. The
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main plastic additives and adsorbed contaminants for which some information is available comprise
phthalates, bisphenol A, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons (PAHs) and
polychlorinated biphenyls (PCBs). Concentrations of up to 2,750 ng/g of PCB and 24,000 ng/g of PAHs
have been found in microplastic deposited at beaches. Information on metals is scarce and data on
other chemical contaminants are lacking.

Bivalves, such as mussels, are eaten without removal of the digestive tract, and thus represent a
conservative scenario of microplastic exposure for all fish and other seafood. As an example, the
exposure to microplastics was calculated after consumption of a 225 g portion of mussels. Using the
highest amount of microplastics found in mussels, this would give an exposure of 900 pieces of
microplastic. Assuming spherical microplastics with a diameter of 25 lm and density of 0.92 g/cm3,
the exposure would be 7 lg of plastics. Based on the above estimate and considering the highest
concentrations of additives or contaminants in the plastics reported and complete release from the
microplastics, the portion of mussels would have a small effect on the exposure to PCBs (increase
< 0.006%), PAHs (increase < 0.004%) and bisphenol A (increase < 2%).

There is a lack of information on the fate of microplastics in the GI tract. The available data on
toxicokinetics only include absorption and distribution, whereas no information is available on
metabolism and excretion. Only microplastics smaller than 150 lm may translocate across the gut
epithelium causing systemic exposure. The absorption of these microplastics is expected to be limited
(≤ 0.3%). Only the smallest fraction (size < 1.5 lm) may penetrate deeply into organs. There is a lack
of knowledge about the local effects of microplastics in the GI tract, including microbiota. Toxicological
data on the effects of microplastics as such are essentially lacking for human risk assessment.

For microplastics, it is recommended that analytical methods should be further developed and
standardised, in order to assess their presence, identity and to quantify their amount in food. Quality
assurance should be in place and demonstrated. Occurrence data in food, including effects of food
processing, in particular, for the smaller sized particles (< 150 lm) should be generated in order to
assess dietary exposure. Research on the toxicokinetics and toxicity, including studies on local effects
in the GI tract, are needed, in particular, for the smaller sized particles. Research on the degradation
of microplastics and potential formation of nanoplastics in the human GI tract are needed.

Nanoplastics

Based on the internationally recognised definition of nanomaterials, nanoplastics can be defined as
a material with any external dimension in the nanoscale or having internal structure or surface
structure in the nanoscale (0.001–0.1 lm).

In general, there is very little or no information with regard to nanoplastics for all the areas covered
in this Statement.

Nanoplastics can be produced during fragmentation of microplastic debris and can originate from
engineered material used, for example in industrial processes.

No analytical methods exist for identification and quantification of nanoplastics in food, thus data
on the occurrence in foods are completely lacking. It is expected that the analytical strategy that
applies to nanomaterials in general will be applicable.

There is no available literature on the fate of nanoplastics during the processing of seafood.
Nanoplastics are likely to originate from other sources than the food itself, e.g. processing aids, water,
air or being release from machinery, equipment and textiles, although there is no available literature
on this issue. It is therefore possible that the amount of nanoplastics increases during processing. The
effect of other processes, e.g. cooking and baking, on the content of plastics is not known.

There is a lack of information on the fate nanoplastics in the GI tract. The available data on
toxicokinetics only include absorption and distribution, whereas no information is available on
metabolism and excretion. It is not known whether ingested microplastics can be degraded to
nanoplastics in the GI tract. Some engineered nanomaterials have shown toxic effects, however,
toxicity data for nanoplastics are essentially lacking for human risk assessment and it is not yet
possible to extrapolate data from one nanomaterial to the other. Nanoplastics can enter cells; the
consequences for human health are unknown.

For nanoplastics, it is recommended that analytical methods should be developed and standardised,
in order to assess their presence, identity (including shape) and to quantify their amount in food.
Quality assurance should be in place and demonstrated. Occurrence data in food should be generated
in order to assess dietary exposure. Research on the toxicokinetics and toxicity are needed.
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1. Introduction

1.1. Terms of Reference as provided by the requestor

In accordance with Art (29) of Regulation (EC) No 178/2002, the Federal Institute for Risk
Assessment (BfR) asks the European Food Safety Authority (EFSA) to provide a scientific opinion on
the presence of plastic microparticles and nanoparticles in food, with particular focus on seafood.

In particular, the opinion should:

1) deliver an extensive review of the available information on the presence of plastic
microparticles and nanoparticles in food, including their potential hazards to human health;

2) identify the main data gaps to be filled for the performance of a comprehensive assessment
on the risks to human health related to the presence of plastic microparticles and
nanoparticles in food, in particular seafood;

3) propose research recommendations to fill the data gaps identified under (2).

1.2. Interpretation of the Terms of Reference

For plastic microparticles, the term microplastics will be used throughout the statement. There is no
universal harmonised term defining the dimensions of microplastics. In the literature, they are
generally considered to comprise of a heterogeneous mixture of differently shaped materials referred
to as fragments, fibres, spheroids, granules, pellets, flakes or beads, in the range of 0.1–5,000 lm.

The European Union (EU) adopted a definition of a nanomaterial in 2011 to provide a common
basis for regulatory purposes across all areas of EU policy (Recommendation on the definition of a
nanomaterial (2011/696/EU1)). Its provisions include a requirement for review in the light of
experience and of scientific and technological developments and the European Commission (EC) is
expected to conclude the review in 2016. According to the Recommendation a

‘“nanomaterial” means a natural, incidental or manufactured material containing particles, in an
unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the
particles in the number size distribution, one or more external dimensions is in the size range
1–100 nm. In specific cases and where warranted by concerns for the environment, health, safety
or competitiveness the number size distribution threshold of 50% may be replaced by a threshold
between 1 and 50%’.

The International Organization for Standardization (ISO) (ISO, 2015) has defined the term
nanomaterial as a material with any external dimension in the nanoscale or having internal structure or
surface structure in the nanoscale. Nanoscale is defined as ranging from approximately 1 to 100 nm
(0.001–0.1 lm). Nanoparticles are defined as nanoobjects with all three external dimensions in the
nanoscale where the lengths of the longest and the shortest axes of the nanoobject do not differ
significantly. If the dimensions differ significantly (typically by more than three times), terms, such as
nanofibre, may be preferred to the term nanoparticle.

In this assessment, the term nanoplastics will be used throughout the statement to indicate any
plastic material in the size range complying with the above ISO definition.

With regard to additives and chemical contaminants, the statement includes information up to the
possible transfer of these substances into edible tissues and an estimation of the human exposure.

2. Methodologies

2.1. Collection and appraisal of literature

2.1.1. Strategy for literature search

For the present evaluation, the EFSA Panel for Contaminants in the Food Chain (CONTAM Panel)
considered literature made publicly available up to and including 01 February 2016. A comprehensive
search for literature was conducted for peer-reviewed original research pertaining to the presence of
microplastics and nanoplastics in food, with particular focus on seafood. The search strategy was
designed to identify scientific literature on microplastics and nanoplastics in food, covering the

1 Commission Recommendation 2001/696/EU of 18 October 2011 on the definition of nanomaterial. OJ L 275, 20.10.2011, p. 38–40.
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following areas: methods of analysis, chemistry, processing, occurrence, exposure, toxicity, mode of
action, toxicokinetics and human observations (see Appendix A for more details).

The literature search was not restricted to publications in English language, however, literature in
other languages was only considered if an English abstract was available. The first literature search
was performed in July 2014 and has since been updated in March 2015, October 2015, December
2015 and 1 February 2016. Web of Science2 and Pubmed3 were identified as databases appropriate for
retrieving literature for the present evaluation. The references resulting from the literature search were
imported and saved using a software package (EndNote4), which allows effective management of
references and citations. Additionally, reviews and relevant scientific evaluations by national or
international bodies were also considered.

2.1.2. Appraisal of studies

Information retrieved has been reviewed by the CONTAM Working Group on the presence of
microplastics and nanoplastics in food, with particular focus on seafood, using expert judgement. Any
limitations of the information used are clearly documented in this opinion.

3. Assessment

3.1. Background information

3.1.1. Microplastics

Microplastics have been subject to several recent reviews (Barnes et al., 2009; Andrady, 2011;
Browne et al., 2011; EC, 2011; Law and Thompson, 2014; Wang et al., 2016), with the most
comprehensive recent being by Bouwmeester et al. (2015) and GESAMP (2015) which also addressed
potential human health effects.

A distinction can be made between primary and secondary microplastics (see Figure 1). Primary
microplastics are originally manufactured to be that size and include industrial ‘scrubbers’ used to blast
clean surfaces, plastic powders used in moulding, microbeads in cosmetic formulation as well as
spherical or cylindrical virgin resin used during production of plastic products (GESAMP, 2015).

Secondary microplastics are the predominant form and originate from fragmentation of plastic debris
floating in the oceans through prolonged exposure to ultraviolet (UV) light and physical abrasion.
Secondary microplastics can originate from land-based or sea-based sources. Sea-based sources include
fishing equipment and sewage from ships. Land-based sources could be plastic bags, packaging
materials or waste from plastic industry. Biofouling of these small-sized fragments causes them to sink to
the sea floor at all depth from intertidal to abyssal environments. Microplastics have been detected in a
large variety of zooplanktonic organisms and also in higher trophic levels, both invertebrates and
vertebrates which are exposed either directly or via lower trophic levels. It has been estimated that the
total amount of secondary microplastics emission to the marine environment is 68,500–275,000 tonnes
per year (EU, 2016). This can be divided into coastal emission of 54,300–145,000 tonnes per year; inland
emission of 500–20,000 tonnes per year and marine emission of 13,700–1,110,000 tonnes per year.

Release of microplastics into the terrestrial environment occurs from personal care products like
toothpaste and cleaning agents and textile fibres (e.g. clothes through washing). They are transported
to sewer systems, which are not able to remove these particles and thus may enter the marine
environment. Other sources are paints and tyres (GESAMP, 2015; EU, 2016).

In addition, atmospheric transport has to be considered as a route of microplastic contamination
(Bouwmeester et al., 2015). The top three of polymer types reported in microplastics are polyethylene
(PE), polypropylene (PP) and polystyrene. On average, 4% of the weight of plastics is additives
(Bouwmeester et al., 2015) and can be both organic and inorganic substances. About half of these
additives are plasticisers, such as phthalates, but alkylphenols and bisphenol A also occur. Titanium
dioxide nanoparticles as well as barium, sulfur and zinc have been are examples of inorganic additives
found in microplastics (Fries et al., 2013). Polymers usually also contain remnants of the monomers.

2 Web of Science (WoS), formally ISI Web of Knowledge, Thomson Reuters. http://thomsonreuters.com/thomson-reuters-web-
of-science/

3 PubMed, Entrez Global Query Cross-Database Search System, National Center for Biotechnology Information (NCBI), National
Library of Medicine (NLM), Department of the National Institutes of Health (NIH), United States Department of Health and
Human Services. http://www.ncbi.nlm.nih.gov/pubmed/

4 EndNote X5, Thomson Reuters. http://endnote.com/
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Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polycyclic aromatic
hydrocarbons (PAHs) and organochlorine pesticides, which are generally hydrophobic, preferentially
adsorb to the surface of the particles, and because of the particle’s high surface to volume ratio, the
amount adsorbed per gram of plastic may be high (see Sections 3.5 and 3.6 for further details).

In addition, inorganic substances, e.g. metals in water adsorb to microplastics where they may
concentrate (see Section 3.5 for further details).

3.1.2. Nanoplastics

There is little doubt that nanoplastics will be produced during fragmentation or weathering of
microplastic debris (Andrady, 2011; Koelmans et al., 2015). Laboratory experiments showed degradation
of polystyrene disposable coffee cup lids with formation of nanoplastics over time (Lambert and Wagner,
2016). Possibly, microbial degradation could also play a role, because several hydrocarbon-degrading
microorganisms have been identified to thrive on plastic debris in the oceans (Zettler et al., 2013). The
size distribution of floating plastic material in the oceans also suggests that continued fragmentation of
microplastics into nanoplastics may occur (Cozar et al., 2014). Finally, engineered nanoplastics are used
in a variety of industrial processes and will therefore turn up in the environment (GESAMP, 2015).
However, to date, analytical methods for nanoplastics have not been sufficiently developed to confirm
their presence in the environment or food chain (Koelmans et al., 2015).

3.2. Legislation, initiatives and assessments

3.2.1. Legislation

Although there is no legislation for microplastics and nanoplastics as contaminants in food, there are a
broad range of EU policies and legislation with regard to marine litter, covering sources and impacts.

The marine strategy framework directive (MSFD), Directive 2008/56/EC5 aims to achieve Good
Environmental Status (GES) of marine waters in the EU, by 2020. Member States (MS) are required to
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Figure 1: Potential pathways for the transport of microplastics and their biological interactions
(Wright et al., 2013. © Elsevier)

5 Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community
action in the field of marine environmental policy (Marine Strategy Framework Directive). OJ L 164, 25.6.2008, p. 19–40.
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develop marine strategies that should lead to achieve GES. Article 3(5) of the directive, defines GES as
‘the environmental status of marine waters where these provide ecologically diverse and dynamic
oceans and seas which are clean, healthy and productive’. Annex I of the Directive lists 11 qualitative
descriptors for determining GES. Descriptor 10 focuses on marine litter and considers that GES will be
achieved when ‘properties and quantities of marine litter do not cause harm to the coastal and marine
environment. To support implementation of the Directive, detailed reports for each descriptor were
prepared by task groups; (JRC, 2010). On 1 September 2010, Commission Decision 2010/477/EU6 was
adopted, detailing criteria and indicators to be used by MS for each descriptor; for which, two criteria
(see 10.1 and 10.2, below) and four indicators (see 10.1.1–10.1.3 and 10.2.1, below) are provided for
descriptor 10:

‘The distribution of litter is highly variable, which needs to be taken into consideration for
monitoring programmes. It is necessary to identify the activity to which it is linked including, where
possible, its origin. There is still a need for further development of several indicators, notably those
relating to biological impacts and to micro-particles, as well as for the enhanced assessment of their
potential toxicity.

10.1. Characteristics of litter in the marine and coastal environment

• Trends in the amount of litter washed ashore and/or deposited on coastlines, including analysis
of its composition, spatial distribution and, where possible, source (10.1.1)

• Trends in the amount of litter in the water column (including floating at the surface) and
deposited on the sea-floor, including analysis of its composition, spatial distribution and, where
possible, source (10.1.2)

• Trends in the amount, distribution and, where possible, composition of micro-particles (in
particular micro-plastics) (10.1.3)

10.2. Impacts of litter on marine life

• Trends in the amount and composition of litter ingested by marine animals (e.g. stomach
analysis) (10.2.1).

This indicator needs to be developed further, based on the experience in some sub-regions (e.g.
North Sea), to be adapted in other regions’.

With regard to cosmetic products, some of which may contain microplastics (or microbeads), the
Regulation EC No 1223/20097 stipulates that ‘a cosmetic product made available on the market shall
be safe for human health’. The product should undergo a safety assessment, which takes into account
the anticipated systemic exposure to individual ingredients in a final formulation.

On 28 December 2015, the United States passed the ‘Microbead-Free Waters act of 2015’8 to ban
rinse-off cosmetics that contain intentionally-added plastic microbeads (from January 1, 2018), and to
ban manufacturing of these cosmetics (from July 1, 2017). For cosmetics, that are over-the-counter
drugs, the bans will be delayed by 1 year.

3.2.2. Initiatives and assessments

An ongoing, 7th Research Framework Programme (FP7) project, relevant to marine litter and food
safety is ECsafeSEAFOOD,9 (February 2013–January 2017) which aims to assess food safety issues in
relation to priority contaminants present in seafood as a result of environmental contamination
(including microplastics). The project will also contribute to descriptors 9 and 10 of the MSFD.

The International Council for the Exploration of the sea (ICES), on request from the Oslo and Paris
Commission (OSPAR), have developed common monitoring protocols for plastic particles in fish
stomachs and selected shellfish.10

In 2015, the Danish environmental protection agency published a report (Denmark EPA, 2015) on
the occurrence, effect and sources of release to the environment of microplastics in Denmark.

6 Commission Decision 2010/477/EU of 1 September 2010 on criteria and methodological standards on good environmental
status of marine waters (notified under document C(2010) 5956). OJ L 232, 2.9.2010, p. 14–24.

7 Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. OJ
L 342, 22.12.2009, p. 59–209.

8 https://www.congress.gov/bill/114th-congress/house-bill/1321/all-info
9 http://www.ecsafeseafood.eu/

10 http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2015/Special_Requests/OSPAR_PLAST_advice.pdf
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Initiatives and assessment by international organisations relevant to marine litter include the United
Nations Environmental programme (UNEP) which in 2014 adopted a resolution on marine plastic
debris,11,12 noting the impact of marine litter (including plastics) on various areas, including potential
risk to human health.

The Global partnership on Marine litter (GPML),13 launched in June 2012 at Rio +20, seeks to
protect the environment and human health by reducing and managing marine litter.

The Joint Group of Experts on the Scientific Aspects of Marine Environmental protection
(GESAMP),14 provides advice to UN organisations on pollution and other problems facing marine and
environments. The GESAMP Working Group 40, on sources, fates and effects of microplastics in the
marine environment recently published its global assessment report (GESAMP, 2015). With regard to
risks to human health, it concluded:

‘Although it is evident that humans are exposed to microplastics through their diet and the presence of
microplastics in seafood could pose a threat to food safety (Van Cauwenberghe and Janssen, 2014),
our understanding of the fate and toxicity of microplastics in humans constitutes a major knowledge
gap that deserves special attention. Therefore, an analysis and assessment of the potential health risk
of microplastics for humans should comprise dietary exposure from a range of foods across the total
diet in order to assess the contributing risk of contaminated marine food items’.

3.3. Methods to identify and quantify

Methods for the determination of microplastics in foods, including seafood, are described hereafter.
Specific methods for nanoplastics have not been described in the literature.

3.3.1. Microplastics

Reference methods for sampling or analysis of microplastics in foods have not been described.
One of the crucial factors in the analytical determinations is to ensure that samples are not

contaminated with microplastics from air, clothes, equipment or reagents used in the analysis.
Precautions to avoid contamination comprise minimising contact with air as much as possible, e.g.
covering of beakers, bottles, sampling equipment, etc., using filtered water and solutions, and careful
cleaning of instruments (Liebezeit and Liebezeit, 2013, 2014; Lusher et al., 2013; De Witte et al.,
2014; Sanchez et al., 2014; Van Cauwenberghe and Janssen, 2014). Air flow cabinets have also been
used to prevent contamination (Foekema et al., 2013; Van Cauwenberghe and Janssen, 2014). Method
blanks are essential to ensure analytical quality of the determinations. In some studies, method blanks
without samples were subjected to the same treatment as samples. In Section 3.5 on occurrence,
Table 1 indicates whether or not method blanks were used in the studies investigating the occurrence
of microplastics in seafood and food.

The methods described for microplastics include one or more of the following steps:

• extraction and degradation of biogenic matter;
• detection and quantification (enumeration);
• characterisation of the plastic.

The determination of plastic additives, such as phthalates, bisphenol A, and polybrominated
diphenyl ethers, and adsorbed contaminants, such as metals, PAHs and PCBs has been performed in
microplastics by numerous authors (e.g. Frias et al., 2010; De Witte et al., 2014; Gauquie et al., 2015)
with well-established techniques and which will not be further described here.

The sampling depends on the organism and the study. For instance, mussels were either collected
at their natural growing sites, at farms or retail (Mathalon and Hill, 2014). Samples of beer, honey and
sugar have been purchased at retail (Liebezeit and Liebezeit, 2013, 2014).

3.3.1.1. Degradation of biogenic matter

Extraction of microplastics from foods can be achieved by the degradation or digestion of biogenic
matter before detection and quantification. Several methods have been described. Degradation with

11 http://www.unep.org/chemicalsandwaste/Portals/9/Special%20Programme/UNEA%20Special%20Programme%20resolution%
201-5%20and%20annex%20II.pdf

12 http://www.unep.org/about/sgb/cpr_portal/Portals/50152/K1504068Doc6add4.pdf
13 http://unep.org/gpa/gpml/gpml.asp
14 http://www.gesamp.org/about
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30% H2O2 has been used for mussels (Mathalon and Hill, 2014) and honey and sugar (Liebezeit and
Liebezeit, 2013). 10% KOH has been used to completely dissolve the digestive tracts of different
species of fish (Foekema et al., 2013). HNO3 (22.5 M) has been used for the analysis of mussels
(Mytilus edulis) and oysters (Crassostrea gigas) (Van Cauwenberghe and Janssen, 2014). A mixture of
HNO3 and HClO4 was used for mussels (De Witte et al. (2014) and shrimp (Devriese et al., 2015).

Nuelle et al. (2014) compared H2O2 (30% and 35%), NaOH (10, 20, 30, 40 and 50%) and 20%
HCl for degradation of biogenic matter from animal or plant material that commonly can be found on
a beach, e.g. feathers, bones, leafs. Also, the resistance of common polymers (polyvinyl chloride
(PVC), polyethylene terephthalate (PET), nylon 6, acrylonitrile-butadiene-styrene, polycarbonate,
polyurethane, PP, low-density polyethylene (LDPE), linear LDPE and high-density polyethylene (HDPE))
to degradation was tested. It was concluded that 30% H2O2 achieved the best digestion (about 50%)
of the biogenic matter. However, also changes in the size of some of the microplastics were observed
and 35% H2O2 destroyed some of the microplastics. HNO3 (22.5 M), NaOH (52.5 M) and 30% H2O2

were compared for the digestion of mussels (Claessens et al., 2013). HNO3 performed better than the
other two methods. Good recoveries of spikes of polystyrene spheres and fishing line fibres were
obtained after HNO3 digestion, whereas the nylon fibres were totally degraded upon acid extraction.

The HNO3 method of Claessens et al. (2013) and the HNO3/HClO4 method of De Witte et al. (2014)
were used and compared to determine microplastics in mussels (M. edulis) from different waters in
Europe (Vandermeersch et al. (2015). Although some differences existed, classification of particle
types (fibre, particle, fragment and sphere) and total number of microplastics were not significantly
different between the two methods.

The ICES/OSPAR protocol10 suggestion was based on acid digestion and stated that it may
underestimate some polymers.

Cole et al. (2014) compared treatment with HCl, NaOH and enzymes in zooplankton and showed
that acid treatment was the least effective. Alkaline treatment caused physical damage and
discoloration of microplastics (nylon, PE and unplasticised PVC) and several polyester fibres were lost.
Instead, Cole et al. (2014) proposed the use of biogenic degradation with enzymatic treatment
(protein kinase-K) that has no influence on the microplastics, e.g. size and at the same time degraded
about 97% of the biogenic matter.

3.3.1.2. Detection and quantification (enumeration)

Visual examination of the isolated microplastics is mostly performed in every study to distinguish
and separate microplastics from other materials, such as organic debris (shell fragments, animal parts,
dried algae, etc.) and other items (metal, coatings, tar, glass, etc.). This is performed by the naked
eye or with the aid of a microscope. Due to the diversity of sources, there exists a wide variety of
microplastics with multiple shapes, sizes and origins. Categories used to describe microplastics are
source, shape, erosion and colour. In many studies, dissection or stereomicroscopes were used (e.g.
Claessens et al., 2013; Lusher et al., 2013; Devriese et al., 2015). If this visual-assisted microscopy is
used, the lower size limit of detection is in the low micrometre range (Hidalgo-Ruz et al., 2012). Also
scanning electron microscopic methods have been used (Murray and Cowie, 2011; Fries et al., 2013)
and by this even smaller particles can be detected.

Degradation of biogenic matter prior to detection and quantification has not always been
performed. Anastasopoulou et al. (2013) and Boerger et al. (2010), e.g. examined intestines and/or
stomachs from different species of fish directly under a microscope. Boerger et al. (2010) sorted the
contents into natural (plankton) and non-natural (plastic) items and the plastic items were described
according to colour, length and shape (fragment, line, foam, pellet or film). Anastasopoulou et al.
(2013) only stated that a quite high percentage of the litter consisted of plastic. Also, the digestive
tract from gudgeon (Gobio gobio) has been analysed by visual inspection under a microscope
(Sanchez et al., 2014) and it was stated that not only hard and coloured fibres but also other kinds of
microplastic such as transparent fibres and pellets were recorded.

In a study on Norway lobsters (Nephrops novegicus), foregut (stomach) and midgut were removed
from the animals and were examined by a microscope (Murray and Cowie, 2011). Identifiable hard
foods as shells, fish bones, mud and algae were recorded. Any visible plastic present was also
recorded and categorised in three groups: up to five strands; strands and ball; and ball. A ball was
defined as when plastic strands had tangled into a ball with any algae present in the stomach, making
individual plastic components difficult to quantify. Samples of plastic taken from the stomach contents
were processed for viewing using microscopy.
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Other studies first digested the samples before visual inspection by microscopy and sometimes
enumeration of the number of microplastics (Foekema et al., 2013; Lusher et al., 2013; Mathalon and
Hill, 2014; Van Cauwenberghe and Janssen, 2014; Devriese et al., 2015).

Microplastics have been classified or named in several ways. They were described as microplastic
fibres (microfibres) in the study by Mathalon and Hill (2014). In this study, microplastics that were
smaller in diameter and brightly coloured were considered to originate from contamination. De Witte
et al. (2014) and Devriese et al. (2015) classified the observed microplastic by colour and category
(fibre, film spherule and fragment). In the study of Lusher et al. (2013), the items were described
according to colour, length and shape (fragment, fibre, bead and film). In the study by Foekema et al.
(2013), the number of plastics per fish was counted, and colour and shape were described. Particle
sizes were measured at their largest cross-section. A selection of six items representing the major
visually distinguishable classes were further analysed to obtain an impression of the polymer
composition. Van Cauwenberghe and Janssen (2014), assigned the detected microplastics to one of
five classes: 5–10 mm, 11–15 mm, 16–20 mm, 21–25 mm and > 25 mm.

3.3.1.3. Characterisation and identification of the plastic chemical composition

Simple methods for characterisation of the plastic material have been applied, such as the ‘hot
point test’ in which a heated needle is used and if plastic, it will melt and the needle leaves a mark (De
Witte et al., 2014; Devriese et al., 2015). No attempts were performed to identify the type of plastics.

Liebezeit and Liebezeit (2013, 2014) used a simple staining method to ascertain the nature of the
coloured fibres and fragments in sugar, honey and beer. The particulates were stained with fuchsin and
Rose Bengal. Synthetic fibres or fragments will not be stained as opposed to non-synthetic fibres/
fragments. Non-stained material was referred to as microplastic. However, it was recognised that other
methods, e.g. Fourier transform infrared spectrometry (FT-IR) or Raman spectroscopy should have
been used to provide definite proof.

Advanced techniques for the characterisation and identification of the type of plastic are FT-IR
(Foekema et al., 2013; Lusher et al., 2013), and Raman spectrometry (Murray and Cowie, 2011; Van
Cauwenberghe and Janssen, 2014). Another technique to obtain structural information of the plastic is
pyrolysis-gas chromatography/mass spectrometry (GC/MS) (Fries et al., 2013; Nuelle et al., 2014).
Identification is performed by comparison with standard spectra or pyrograms of plastic.

3.3.2. Nanoplastics

Detection of nanoplastics in foods is challenging because the resolution or contrast between
nanoplastics and the food matrix is very low, which severely hampers microscopic methods. As a
result, imaging by electron microscopy, an obvious option for size-based detection of nanoplastics,
would require in most cases prior isolation of the nanoplastics from the sample.

Methods for the determination of nanoplastics in foods have not been developed yet. It is expected
that the analytical strategy that applies to nanomaterials in general will be applicable. This approach
would require isolation of the nanoplastics from the food matrix, followed by size separation and
detection, ideally including both identification and quantification (Rossi et al., 2014). Extraction of the
nanoplastics from foods might be achieved by chemical digestion (using approaches similar to those
described for microplastics) or enzymatic digestion. After isolation of the nanoplastics, size-based
discrimination could be achieved by ultrafiltration or other separation methods such as flow field
fractionation (FFF) and hydrodynamic chromatography (HDC). FFF might be used in combination with
spectrometry for online detection; otherwise size fractions might be collected offline and studied further
with mass spectrometry, to identify the chemical composition of the particles, or electron microscopy.

So far, characterisation of nanoplastics and polymer nanoparticles not embedded in complex
matrices has been reported by transmission electron microscopy (TEM) (Velzeboer et al., 2014) and
HDC combined with UV detection (Striegel and Brewer, 2012). Nanoparticle tracking analysis (NTA) has
been used in laboratory studies on the degradation of polystyrene to nanosized particles (Lambert and
Wagner, 2016) and, in principle, also dynamic light scattering (DLS) could be used in similar
experiments. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDX)
and FFF coupled to multiangle light scattering (MALS) with pyrolysis have also been reported
(Bouwmeester et al., 2015). The combination of atomic force microscopy (AFM) and infrared (IR)
spectroscopy can be used to characterise material in nanoscale including engineered polystyrene
(Dazzi et al., 2012). However, the above-mentioned approaches and techniques will have to be
developed for the detection of nanoplastics in foods.
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3.4. Food processing

There are no studies about the fate of micro- or nanoplastics during the processing of seafood.
Humans will most often eat cleaned seafood, e.g. fish, where the gastrointestinal (GI) tract is not
included. As most of the microplastics will be found in the GI tract, gutting will decrease the exposure
compared to eating whole fish. This does not apply to shellfish and certain species of small fish.

Micro- and nanoplastics are likely to originate from other sources than the food itself, e.g.
processing aids, water, air or being release from machinery, equipment and textiles, although there is
no available literature on this issue. It is therefore possible that the amount of micro- or nanoplastics
increases during processing. The effect of other processes, e.g. cooking and baking, on the content of
plastics is not known.

3.5. Occurrence

3.5.1. Microplastics

3.5.1.1. Trophic transfer in the marine food chain

Microplastics can be ingested by many marine invertebrates as the particles are similar in size to
some species of plankton (Browne et al., 2008). Microplastics can also accumulate in sediment
(Thompson et al., 2004), and may therefore be available to benthic species. On highly impacted
beaches, microplastic concentrations (< 1 mm) can reach 3% by weight, and are a potential substrate
for the adherence of organic contaminants (Wright et al., 2013), and colonisation by bacteria (Zettler
et al., 2013).

In a laboratory study designed to mimic a coastal ecosystem, Set€al€a et al. (2016) compared the
ingestion of microplastics in marine invertebrates with different feeding habits (bivalves, free-swimming
crustaceans and benthic, deposit-feeding organisms). Microbeads (10 lm) were ingested by all
organisms, with the highest quantities taken up in bivalves (Mytilus tossulus and Macoma balthica).
The authors concluded that the ingestion of microplastics in marine invertebrates depended on the
particle concentration and feeding mode.

Cole et al. (2013) showed that 13 zooplankton taxa had the capacity to ingest 1.7–30.6 lm
polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Similarly, Set€al€a et al. (2014)
showed ingestion of 10 lm fluorescent polystyrene microspheres by mysid shrimp, copepods,
cladocerans, rotifers, polychaete larvae and ciliates. Polystyrene microspheres (10 lm) were also
ingested by polychaetes, bivalves, echinoderms and bryozoans (Ward and Shumway, 2004). Other
invertebrates with a range of feeding strategies, including filter feeders (barnacles), deposit feeders
(lugworms) and detritivores (amphipods, sea cucumbers), have been shown to ingest microplastics
(Thompson et al., 2004; Browne et al., 2008; Graham and Thompson, 2009).

The common mussel (M. edulis) can ingest microplastic particles ranging in size from 2 to 10 lm
(Ward and Targett, 1989; Ward et al., 2003; Browne et al., 2008).

Experimental evidence indicates that microplastics have the potential to be transferred between
trophic levels. Farrell and Nelson (2013) demonstrated that trophic transfer occurs between mussels
and crabs. Norway lobsters (Nephrops norvegicus) have shown to ingest microplastics via their food,
although this did not reflect natural trophic level transfer as they were fed pieces of fish seeded with
strands of polypropylene (Murray and Cowie, 2011). Plastic particles found in the scat of fur seals
(Arctocephalus spp.) were speculated to have been ingested by lantern fish (Electrona subaspera),
which is common prey for seals (Eriksson and Burton, 2003).

Fish meal has some use in poultry production and pig rearing, hence microplastics may end up in
non-marine foods (Bouwmeester et al., 2015).

3.5.1.2. Occurrence of microplastics in seafood and other foods

Microplastics have been reported in seafood (such as fish, shrimp, and bivalves) and also in honey,
beer and table salt. Details of studies investigating the microplastic content in these foods are given
below and in Table 1.

Boerger et al. (2010) reported that plastic fragments in the centimetre range were found in
approximately one third of all fish (2.1 particles/fish) caught in the North Pacific Central Gyre.
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In pelagic and demersal fish from the English Channel, the digestive tract of one third of the
samples contained microplastics. On average 1.9 particles/fish were reported in the GI tract, ranging
from 130 to > 5,000 lm in size (Lusher et al., 2013).

Stomach contents of a variety of commercial fish species from Portugal contained on average
1.40 � 0.66 particles/fish (n = 52), with particle sizes ranging 220–4,800 lm (Neves et al., 2015).

Among the 535 fish collected in freshwater drainages and an estuary of the Gulf of Mexico, 8% of
the freshwater fish and 10% of the marine fish had microplastics in their GI tract (Phillips and Bonner,
2015). Percentage occurrence of microplastics ingested by fish in non-urbanised streams (5%) was
less than that of one of the urbanised streams (29%). Percent occurrence of microplastics by habitat
(i.e. benthic, pelagic) and trophic guilds were similar.

The presence of plastic debris, indicated as anthropogenic debris, in the GI tract of fish on sale for
human consumption, sampled from markets in Indonesia and California, USA, was assessed by
Rochman et al. (2015). In Indonesian samples, microplastics were found in 28% of individual fish and
in 55% of all the 11 species investigated (5.03 particles/fish). Similarly, in the USA, microplastics were
found in 25% of individual fish (2.03 particles/fish) and in 67% of all the 12 species investigated. The
microplastics recovered from fish in Indonesia were categorised as fragments, foam or film, whereas
the microplastics recovered from fish in the USA were primarily fibres.

Rummel et al. (2016) investigated the occurrence of plastics, including microplastic, in pelagic
(herring and mackerel) and demersal fish (cod, dab and flounder) from the North Sea and Baltic Sea.
Plastic particles were detected in 5.5% of the fish examined, with 74% of all particles being in the
microplastic (< 5 mm) size range (1–7 particles/fish) and almost 40% of the particles consisted of PE.
Plastic ingestion was significantly higher in pelagic feeders compared to the demersal species (10.7%
vs 3.4%). However, it is uncertain whether the fish examined in the various studies consumed the
microplastics directly, or it was a result of trophic transfer.

Synthetic fibres with a size range of 200–1,000 lm were detected in brown shrimp
(Crangon crangon) from various locations at the English Channel. Fibres were found in 63% of the
specimens and an average value of 0.68 � 0.55 microplastics/g (1.23 � 0.99 microplastics/shrimp)
was obtained (Devriese et al., 2015). Temporal differences were reported, with a higher microplastic
uptake in October compared to March.

Microscopic synthetic fibres ranging from 200 lm up to 1,500 lm size were detected in the soft
tissues of samples of wild and commercial mussels (M. edulis, Mytilus galloprovincialis,
M. edulis/galloprovincialis hybrid form) collected from Belgian coasts (three groynes and three
quayside locations) and three Belgian supermarkets (De Witte et al., 2014). Black, red, blue, purple,
translucent, transparent, orange, green and yellow fibres, with the most common size class being
1,000–1,500 lm, were detected. The number of total microplastics varied from 0.26 to 0.51 fibres/g of
mussel. A higher prevalence of orange fibres at quaysides was put in relation to fisheries activities.

In samples of mussels (M. edulis), reared in the North Sea, and Pacific oysters (C. gigas), reared in
the Atlantic Ocean, an average content of 0.36 and 0.47 particles/g, respectively, was detected (Van
Cauwenberghe and Janssen, 2014). After a 3-day depuration period, the microplastic content
decreased to 0.24 and 0.35 particles/g in mussels and oysters, respectively. Depuration resulted in the
removal of all (mussels) or the majority (oysters) of the largest microplastics (i.e. > 25 mm in length);
in mussels, the most abundant microplastics present after gut depuration were the particles ranging
from 5 to 10 lm (50%), while in oysters, the most abundant particles were those in the size ranges
11–15 lm (30%) and 16–20 lm (33%).

Higher amounts of microplastics were found in nine species of Chinese commercial bivalves,
ranging 2.1–10.5 particles/g (Li et al., 2015). The particle sizes ranged 5–5,000 lm, with 60% of the
microplastics in the range of 5–250 lm. Multiple types of microplastics, including fibres, fragments and
pellets, occurred in the tissue of all bivalves. Fibres were the most common microplastics and consisted
of more than half of the total microplastics in most cases.

In Pacific oysters (C. gigas) on sale for human consumption and sampled from markets in California
(USA), microplastics were found in 33% of individual shellfish sampled (Rochman et al., 2015). The
average length of all fibres recovered from oysters was 5,500 lm and the width ranged 20–50 lm.

Mussels (M. edulis) collected at six locations along the French–Belgian–Dutch coastline, after being
submitted to a 24 h-clearance in order to allow complete gut emptying, were found to contain on
average 0.2 � 0.3 particles/g (size range 20–90 lm), with a maximum value of 1.1 particles/g (Van
Cauwenberghe et al., 2015). To account for potential artefacts due to airborne contamination,
microplastic fibres were excluded from counting and thus the microplastic concentrations reported
could be underestimated.
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Honey samples of different origin, mostly from Germany, were found to contain coloured fibres and
fragments (Liebezeit and Liebezeit, 2013). In honey, fibre counts ranged from 0.04/g to 0.66/g, (mean
value of 0.17 � 0.15/g), and fragments counts were less abundant (0.009 fragments/g). An
environmental origin, that is particles having been transported by the bees into the hive, or having
been introduced during honey processing or both, was suggested. Fibres and fragments were also
identified by the same authors in commercial sugar samples. In addition, granular, non-pollen material
was observed in both honey and sugar samples.

Fibres, fragments and granular material assumed to be microplastics, were determined in 24
German beer brands (Liebezeit and Liebezeit, 2014). In all cases, contamination was found, with
counts ranging from 0.002 to 0.079 fibres/mL, from 0.012 to 0.109 fragments/mL and from 0.002 to
0.066 granules/mL, with a high variability between individual samples and samples from different
production dates. The possible origins of these foreign materials were speculated to be airborne
atmospheric particles, materials used in the beer production process, unwanted impurities on bottle
surfaces and particle contamination of raw materials used for beer production.

In 15 brands of table salt from China, the microplastics content was 0.55�0.68 particles/g in sea
salts, 0.043�0.36 particles/g in lake salts, and 0.007�0.20 particles/g in rock/well salts (Yang et al.,
2015). In sea salts, fragments and fibres were the prevalent types of particles compared with pellets
and sheets. Particle sizes ranged 45–4,300 lm, and microplastics < 200 lm accounted for 55% of the
total. The most common types of plastics were PET, followed by PE and cellophane in sea salts. The
abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well
salts possibly indicating that marine products, such as salt, are particularly subject to contamination
from microplastics.

Table 1: Occurrence of microplastics in seafood and food

Food type
Microplastic average
content (SD)

Method of analysis Reference

Fish

Mesopelagic (five
species) and
epipelagic (one
species) fish, North
Pacific Central Gyre

2.1 (5.8) particles/fish
(n = 235)
Size: > 10,000 µm (cm
range, 1–10 cm)

Stomach contents, detection
microscope
Method blanks not indicated

Boerger et al. (2010)

Pelagic and demersal
fish, English Channel

1.90 (0.10) particles/fish
(n = 184), of 504 fish, 184
had microplastics
Size: 130 to > 5,000 µm

Digestive tract contents,
detection naked eye,
microplastics removed with
tweezers confirmation with
FT-IR
Method blanks not indicated

Lusher et al. (2013)

Commercial fish, 26
species, Portuguese
coast, seven
locations

1.40 � 0.66 particle/fish
(n = 52; 17 out of 26
species sampled)
Size: 220–4,800 µm

Stomach contents, detection
microscope, microplastics
removed with tweezers,
confirmation (subset) with
FT-IR
Method blanks not indicated

Neves et al. (2015)

Commercial fish
from fish markets in
California (USA)
(12 species) and
Sulawesi (Indonesia)
(11 species)

California: 2.03
(2.71)(a) particles/fish,
mainly fibres
Sulawesi: 5.03
(6.43)(a) particles/fish,
mainly fragments, film, foam
Size: average 6,300 (SD
6,700) µm

Digestive tract contents,
extraction/digestion with
KOH, microscope (detection
limit: > 500 µm)
Method blanks used

Rochman et al. (2015)

Pelagic (two species)
and demersal (three
species) fish, North
Sea, Baltic Sea

1–7 particles/fish (n = 16)
Size: < 5,000 µm

Gastrointestinal tract
contents, filter through sieve
(500 µm), microscope,
confirmation with FT-IR
Method blanks not indicated

Rummel et al. (2016)
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Food type
Microplastic average
content (SD)

Method of analysis Reference

Shrimp

Brown shrimp
(Crangon crangon),
Southern North Sea,
English Channel, 16
locations

0.75 (0.53)(a) particles/g wet
weight (n = 165)
Size: 200–1,000 µm

Extraction/digestion with
HNO3/HClO4, detection/
counting microscope,
confirmation with hot point
test
Method blanks used

Devriese et al. (2015)

Bivalves

Mytilus edulis,
commercial mussels,
from three Belgian
supermarkets. Wild
mussels, from
Belgian groynes
(three locations) and
quaysides (three
locations)

0.37 (0.22)(a) particles/g wet
weight (n = 9)
Size: 200–1,500 µm

Extraction/digestion with
HNO3/HClO4, detection/
counting microscope,
confirmation with hot point
test
Method blanks used

De Witte et al. (2014)

Commercial bivalves:
Mytilus edulis, from
one location (mussel
farm), Crassostrea
gigas, from one
location
(supermarket)

M. edulis: 0.36
(0.07) particles/g wet weight
(n = 72)
C. gigas: 0.47
(0.16) particles/g wet weight
(n = 21)
Size: 5–25 µm (55–100%),
> 25 µm (0–45%)

Extraction/digestion with
HNO3, detection/counting
microscope, confirmation
(subset) with Raman
Method blanks used

Van Cauwenberghe and
Janssen (2014)

Commercial bivalves
(9 species), from a
fish market in China

Median 4.0, range 2.1–10.5
particles/g (n = 9)
Size: 5–250 µm (60%),
5–5,000 µm (40%)

Extraction/digestion with
H2O2, floatation with NaCl,
filtered over 5 µm,
detection/counting
microscope, confirmation
(subset) with µ-FT-IR
Method blanks used

Li et al. (2015)

Oysters (Crassostrea
gigas) commercial,
from fish markets in
California (USA)

1.8 (1.72)(a) particles/oyster
(n = 4)
Size (mainly fibres): average
5,500 (SD 5,800) µm

Extraction/digestion with
KOH, microscope (detection
limit: > 500 µm)
Method blanks used

Rochman et al. (2015)

Mytilus edulis,
French-Belgian-
Dutch coastline, six
locations

0.2 � 0.3 particles/g (size
range 20–90 µm)
Size: 20–90 µm

Extraction/digestion with
HNO3, detection/counting
microscope, confirmation
(subset) with Raman
Method blanks not indicated

Van Cauwenberghe et al.
(2015)

Honey

19 samples, mostly
from Germany,
from local
supermarkets
(eight) or
producers (11)

0.166 (0.147) fibres/g
(n = 19)
Size: 40–9,000 µm
0.009 (0.009) fragments/g
(n = 19)
Size: 10–20 µm

Filter through sieve (40 µm),
digestion with 30% H2O2,

detection counting
microscope, confirmation by
staining with fuchsin
Method blanks not indicated

Liebezeit and Liebezeit (2013)

Beer

24 German beer
brands

0.025 (0.021) fibres/mL
(n = 24)
0.033 (0.018) fragments/mL
(n = 24)
0.017 (0.016) granules/mL
(n = 24)
Size: not given

Filtered through sieve
(0.8 µm), detection/counting
microscope, confirmation
with Rose Bengal (organic
matter)
Method blanks used

Liebezeit and Liebezeit (2014)
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3.5.1.3. Chemical and microbial contamination

Chemical contamination

Organic contaminants in microplastics may either be introduced during manufacture or adsorbed from
the seawater (Teuten et al., 2009). Plastic can concentrate contaminants up to the order of 106 (Mato
et al., 2001), thereby acting as a potential source and vector for these chemicals. In oceans and near
coastal areas, concentrations of PCBs,15 PAHs and organochlorine pesticides (1,1-dichloro-2,2-bis
(chlorophenyl)ethylene (DDE)), ranging from 1 to 200 ng/g, 4 to 10,000 ng/g and 0.1 to 250 ng/g,
respectively, have been found (Bouwmeester et al., 2015). Globally, in microplastics deposited at beaches,
even much higher concentrations have been detected: PCBs 0.01–2,750 ng/g; PAHs 90–24,000 ng/g;
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and analogues (1,1-dichloro-2,2-bis(p-chlorophenyl)
ethane (DDD), 1,1-dichloro-2,2-bis(chlorophenyl)ethylene (DDE)) 2–1,061 ng/g.16 Organic contaminants,
such as PCBs, have been shown to transfer from plastic to sediment-dwelling organisms (Teuten et al.,
2007) and streaked shearwater chicks (Teuten et al., 2009).

Trophic transfer of POPs, for example dioxins, PCBs and polybrominated diphenyl ethers, within the
marine food webs, is well-documented and has been reported to be associated with oceanic plastics in
some cases (Ogata et al., 2009) and biomagnification of POPs has been shown (Hu et al., 2005). The
extent of trophic transfer is dependent on characteristics including the octanol–water partition
coefficient (Kow) and metabolic transformation rate of the compound (Wan et al., 2005). Other factors
to consider for the transfer of microplastic-associated POPs are organism-dependent gut retention
times, and the fraction of consumed microplastics that are capable of moving across the gut
epithelium and into other tissues or organs.

Fossi et al. (2012) found that 56% of surface neustonic/planktonic samples from the Mediterranean
Sea contained microplastic particles. Concentrations of the phthalate di-(2-ethylhexyl) phthalate
(DEHP) in planktonic samples from the Ligurian Sea and Sardinian Sea (both in the Mediterranean)
were 18 � 44 ng/g and 23 � 33 ng/g, respectively. Levels of the metabolite mono-(2-ethylhexyl)
phthalate (MEHP) in plankton from the Ligurian Sea and Sardinian Sea were 12 � 124 ng/g and
40 � 42 ng/g, respectively. The mean concentration of MEHP in the blubber of stranded fin whales
(Balaenoptera physalus) in the Mediterranean was 58 ng/g (Fossi et al., 2012).

Inorganic contaminants, such as metals, can also be adsorbed to microplastics in the aquatic
environment. Beached pellets collected along the southwestern shores of Britain contained metal
concentrations similar to (and is some cases exceeding) those in local estuarine sediments (Holmes
et al., 2012). The profile and characteristics of metals adsorbing to PE beads differed somewhat
between freshwater and seawater (Holmes et al., 2014). Beached pellets had higher equilibrium
partition constants relative to water for several metals than virgin plastic beads from the same polymer
(Holmes et al., 2012, 2014). Similarly, adsorption of copper and zinc from seawater was higher for
aged (sun-exposed) PVC and polystyrene fragments than for their virgin counterparts (Brennecke
et al., 2016). The partitioning coefficients for copper and zinc binding to aged PVC beads in seawater
were 850 and 200, respectively, compared with 33 and 32 for virgin PVC pellets (Brennecke et al.,
2016). A comparison of metal adsorption of five different materials of virgin microplastic polymers

Food type
Microplastic average
content (SD)

Method of analysis Reference

Table salt

15 Chinese brands,
from local
supermarkets

Sea salts: 0.550–0.681
particles/g (n = 5)
Lake salts: 0.043–0.364
particles/g n = 5)
Rock/well salts: 0.007–
0.204 particles/g (n = 5)
Size, (all salts):
45–4,300 µm

Dissolved in water, digestion
with 30% H2O2, filtered
(5 µm), detection counting
microscope, confirmation
with µ-FT-IR
Method blanks not indicated

Yang et al. (2015)

n: number of samples containing microplastics.; FT-IR: Fourier Transform Infrared spectrometry.
(a): value calculated from paper.

15 International Union of Pure and Applied Chemists (IUPAC) numbers 66, 101, 110, 149, 118, 105, 153, 138, 128, 187, 180,
170, 206.

16 http://www.pelletwatch.org/maps/map-1.html
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(PET, HDPE, PVC, LDPE, PP) deployed for 12 months in the San Diego Bay area resulted in similar
concentrations of most adsorbed metals (aluminium, chromium, manganese, iron, cobalt, nickel, zinc,
cadmium and lead) that were measured regardless of the plastic type (Rochman et al., 2014a). The
only exception was cadmium, which adsorbed remarkably less to HDPE than to the other four
polymers. Also, the deployed microplastics beads continued to adsorb metals throughout the 12-month
deployment period. The uniformity of metal adsorption to plastic beads of quite different chemical
composition might suggest that the metals bind to ligands on the biofilm and this would also explain
the continuous long-term adsorption of metals as the biofilm grew (Rochman et al., 2014a). The
uniformly observed greater metal adsorption to beached pellets compared to virgin microplastics could
similarly be, at least in part, due to deposition of organic material from biofilm on the former
(Brennecke et al., 2016; Rochman et al., 2014a). Weathering may also contribute by potentially
increasing the surface area of the plastic particles (Holmes et al., 2012, 2014; Rochman et al., 2014a;
Brennecke et al., 2016).

Microplastics could be a vehicle for metal transport in marine and freshwater environments because
they have the potential to adsorb considerable concentrations of metals and may remain suspended
for long periods of time, allowing distribution with water movements. No studies were identified that
have assessed the contribution of metals adsorbed to microplastics in food.

Microbial contamination

It has been documented that plastic debris can act as a substrate for diverse microbial communities
(Harrison et al., 2011, 2014; Zettler et al., 2013; McCormick et al., 2014). Microorganisms, including
plastic decomposing organisms and pathogens have been shown to colonise microplastics.
Furthermore, in the ocean such communities have been shown to be distinct from microbial
communities in the surrounding surface water (Zettler et al., 2013). However, the relevance to food
and the consequences to human health are unknown.

3.5.2. Nanoplastics

There is no available information on nanoplastics.

3.6. Exposure

3.6.1. Microplastics

It is evident from Section 3.5, that data on the content of microplastics in food are scarce. For fish,
only data on microplastics in the digestive tract are available, and the digestive tract normally is
discarded and not consumed. The quantity of microplastics in the edible portion is likely to be
negligible for consumer exposure. Bivalves that are filter feeders, such as mussels, accumulate
microplastics. In addition, as opposed to fish, their digestive tract is eaten. Therefore, their
consumption represents a conservative scenario of dietary exposure to microplastics from seafood in
general. Lucas et al. (1995) determined portions sizes of mussels eaten by 21–25 French female
volunteers when visiting the cafeteria of a large hospital/research centre, and found that a portion of
mussels was on average 200 g (without shells). Assuming that generally men eat 25% more than
women, an average adult is estimated to consume 225 g of mussels. According to Table 1, Chinese
mussels contained the highest number of microplastics: median value 4 particles/g (Li et al., 2015).
Thus, consumption of such a portion of Chinese mussels (225 g) would lead to ingestion of about 900
plastic particles. Assuming spherical particles with an average particle size diameter of 25 lm (Van
Cauwenberghe and Janssen, 2014) and a density of 0.92 g/cm3 (density of LDPE, the most common
polymer type of microplastics (Bouwmeester et al., 2015)), these 900 plastic particles would represent
7 lg of plastics. According to the study on several beer brands by Liebezeit and Liebezeit (2014) (see
Section 3.5, Table 1) most of the samples contained low quantities of microplastics.

3.6.1.1. Persistent organic pollutants adhered to microplastics

An estimate of the exposure to POPs via microplastics ingestion can be obtained from the
microplastics occurrence data in bivalves of Li et al. (2015), the amount of microplastics from the
consumption of 225 g of Chinese mussels and concentration data on POPs in microplastics. In a
conservative scenario, the highest concentrations of organic pollutants measured in microplastics on a
global scale would give a prediction of the highest exposure expected. In microplastics deposited at
beaches, the highest concentrations have been detected: PCBs up to 2,750 ng/g and PAHs up to
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24,000 ng/g.16 In this conservative scenario, the microplastics would lead to ingestion of about 19 pg
of the measured PCBs15 and 170 pg PAHs. In the latest EFSA evaluation on the monitoring of dioxins
and PCBs in food and feed available on the European market (EFSA, 2012), EFSA estimated an
average exposure to non-dioxin-like PCBs of 0.3–1.8 lg PCBs per day (for a person of 70 kg).
Concerning PAHs, EFSA estimated for average EU consumers a median exposure of 3.8 lg per day
(EFSA, 2008). Thus, even if it is assumed that the PCBs and PAHs will be completely released from the
microplastics, consumption of these mussels would have a small effect on the exposure to PCBs
(increase < 0.006%) and PAHs (increase < 0.004%).

3.6.1.2. Additives in microplastics

On average, 4% of the weight of the plastics predominantly found in microplastics are additives
(see Section 3.1). Therefore, using the same mussel example as above, this portion with 7 lg of
microplastics would contain about 0. 28 lg of additives (4% of 7 lg of plastic). If bisphenol A is used
as an example of an additive, this mussel portion would contain 0.28 lg of bisphenol A. In a
conservative scenario we could assume that bisphenol A would be completely released from the
microplastic. EFSA estimated an average bisphenol A exposure of adults from dietary and non-dietary
sources of 0.19–0.20 lg/kg bw per day (EFSA CEF Panel, 2015). So a 70-kg adult would ingest on
average about 14 lg bisphenol A per day. Consequently, the bisphenol A originating from the
microplastics of the mussels would only contribute to about 2%, and would be small. The exposure to
other additives from microplastics is not expected to be substantially different.

3.6.2. Nanoplastics

Because data on nanoplastics in foods are not currently available, exposure cannot be estimated.

3.7. Toxicokinetics

Humans may be exposed to micro- and nanoplastics via inhalation and ingestion or topically. There
is a lack of information on fate of micro- and nanoplastics in the GI tract. In the case of dietary intake,
important questions are whether after ingestion micro- and nanoplastics are confined to the gut lumen
or whether translocation across the gut epithelium takes place. Translocation would imply that internal
organs and tissues are exposed to these particles. Whether nanoplastics can be formed from
degradation of microplastics under the conditions of the human GI tract is not known. The available
data on toxicokinetics only include absorption and distribution, whereas no information is available on
metabolism and excretion.

3.7.1. Uptake kinetics of microplastics

The epithelium of the gut wall represents an important barrier to microplastics, excluding direct
transcellular transport. The paracellular route of uptake is also not possible, given that the maximal
functional pore size of the connecting tight junction channels is only about 1.5 nm (Alberts et al., 2002).
However, uptake via lymphatic tissue, specifically via the microfold (M) cells in the Peyer’s patches
(Galloway, 2015) after which phagocytosis may occur, or via endocytosis, might be possible. Specific
data for microplastics are limited. Particle size is one of the most important factors in determining the
extent and pathway of uptake. The upper particle size limit for endocytosis is about 0.5 lm (Yoo et al.,
2011). Phagocytosis by macrophages is believed to occur with particles > 0.5 lm (Yoo et al., 2011). The
upper size limit for phagocytosis obviously is dictated by the volume of the macrophage. Phagocytosis of
1, 5 and 12 lm polymethacrylate and polystyrene particles was demonstrated in peritoneal
macrophages after intraperitoneal injection in mice (Tomazic-Jezic et al., 2001). Probably the Peyer’s
patches rich in M-cells are the predominant sites of absorption of microplastics (Galloway, 2015).

Translocation across the mammalian gut into the lymphatic system of various types and sizes of
microparticles of various composition, ranging from 0.1�150 lm, has been demonstrated in studies
involving different species, including humans (size of particles: 0.2�150 lm), dogs (3�100 lm),
rabbits (0.1�10 lm) and rodents (30–40 lm) (reviewed by Hussain et al., 2001). PVC particles
(5�110 lm) have been detected in the portal vein of dogs (Volkheimer, 1975).

The intestinal absorption of microplastics appears to be small. In various rodents, only 0.04�0.3%
of the latex particles (2 lm) used were absorbed (Carr et al., 2012). Similar limited absorption (about
0.2%) of polylactide-co-glycolide microparticles (3 lm) was measured in vitro using human mucosal
colon tissue mounted in an Ussing chamber. The mucosal colon tissue of patients with inflammatory
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bowel disease, showed increased transport (0.45% as compared to 0.2% in healthy controls) due to
increased permeability of the gut (Schmidt et al., 2013).

Not much is known on the distribution of microplastics after absorption, but it is known that
microparticles > 0.2 lm that appear in lymph will be eliminated through the splenic filtration system
into the gut (Yoo et al., 2011), whereas microparticles in the blood will be removed in the liver by bile,
and finally excreted via faeces. Particles > 1.5 lm are not expected to enter the capillaries of organs,
so they will not penetrate into organs (Yoo et al., 2011).

Considering the many factors affecting absorption, such as size, composition, surface charge and
hydrophilicity, it is difficult to predict the uptake of the particles.

Summarising, in vivo human data on the absorption of microplastics are not available. Mammalian
studies have detected microparticles with sizes up to 150 lm in lymph, whereas one study detected
PVC particles (110 lm) in the portal vein. Thus very likely, microplastics > 150 lm are not absorbed,
and only local effects on the immune system and inflammation of the gut are to be expected. The
smaller ones (< 150 lm) may lead to systemic exposure, but available data show that absorption was
limited (≤ 0.3%). Only the smallest fraction (size < 1.5 lm) may penetrate deeply into organs.

3.7.2. Uptake kinetics of nanoplastics

A special concern of nanoparticles is their ability to translocate across the lung and gut epithelium,
resulting in systemic exposure. Most of the uptake data are obtained with a large variety of
nanoparticles, and not specifically with nanoplastics. Polystyrene nanoparticles have been used as
model particles for some decades in mammalian in vivo and in vitro studies. The estimated oral
bioavailability of 50 nm polystyrene nanoparticles varied between studies from 0.2% to 2% (Walczak
et al., 2015) to 7% (Jani et al., 1990). As with microplastics, there does not seem to be a simple
relation between uptake, size and composition of the nanoparticles (Jani et al., 1990, 1992; Hillery
et al., 1994; Hillery and Florence, 1996; Hussain et al., 1997, 2001; Walczak et al., 2015). Highly
variable uptakes of polystyrene nanoparticles (50�500 nm) have been reported in various in vitro
intestinal models ranging from 1.5 to 10%, depending on nanoparticle size, surface chemistry and type
of in vitro model (des Rieux et al., 2007; Kulkarni and Feng, 2013; Walczak et al., 2015). In a direct
comparison of the movement of engineered carboxylated polystyrene nanoplastics of 50 and 200 nm
across a coculture of Caco-2 (enterocyte-like), HT29-MTX (goblet cell-like) and Raji B (M cell-like) cells,
it was found that the transport of 50 nm particles was about two orders of magnitude faster than that
of 200 nm particles (Mahler et al., 2012). Furthermore, transport of 200 nm polystyrene particles was
temperature dependent and greatly dependent on the presence of M cells while movement of 50 nm
particles was independent of these variables (Mahler et al., 2012). Collectively these results indicate
that the 200 nm particles were transported by M cells through an energy-dependent process, such as
endocytosis, and that the 50 nm particles may have crossed the in vitro epithelium via a paracellular
route.

In studying the uptake of nanoplastics, the lumen of the GI tract is a complicating factor. Ingested
nanoparticles will not remain in a free form in the lumen, and hence absorption may be affected.
Nanoparticles can interact with a wide range of molecules, such as proteins, lipids, carbohydrates,
nucleic acids, ions, and water present in the GI tract (EFSA Scientific Committee, 2011). Interactions
with proteins surround the particles with a so-called ‘corona’ of proteins (Lundqvist et al., 2008).
Polystyrene nanoparticles may form complex coronas that change over time depending on the local
environment (Tenzer et al., 2013). The protein corona has been shown to be affected in an in vitro
model mimicking human digestion causing significantly increased translocation (Walczak et al., 2015).
In addition, the dissolved organic matter present in natural waters will adsorb onto the surface of the
nanoplastics. The interactions of dissolved organic matter with metal (oxide) nanoparticles has recently
been reviewed (Philippe and Schaumann, 2014) showing that it greatly affects agglomeration and
deposition.

Once nanoparticles have been absorbed, whole body distribution has been shown. For example,
after intravenous injection of various sized gold nanoparticles (10–250 nm) in rats, the smallest
particles appeared to be widespread and were found in the liver, spleen, heart, lungs, thymus,
reproductive organs, kidney, and even in the brain (i.e. crossed the blood–brain barrier). The largest
particles were mainly found in the liver and spleen (De Jong et al., 2008). Some nanoparticles are
capable to cross biological barriers and potentially access, e.g., the brain, the testes, the fetus. Using
an ex vivo human placental perfusion model, fluorescent polystyrene particles with diameters from
50 to 240 nm were found to be taken up by the placenta in a size-dependent manner (i.e. the
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transplacental transfer was greater for smaller particles) (Wick et al., 2010). Particles sized 500 nm
were mainly retained in the maternal circulation or placental tissue, with a low concentration detected
in the fetal circulation.

Summarising, translocation across the epithelium has been demonstrated for many types of
nanoparticles which may result in access to many organs, including the brain. In addition to the blood–
brain barrier, the placental barrier may also be crossed. Nanoplastics, other than polystyrene particles,
have not been studied yet, and it should be realised that uptake and toxicity very much depend on the
chemical nature of the material along with size, shape and other physicochemical properties (EFSA
Scientific Committee, 2009). Thus, extrapolations from studies on one kind of nanomaterial should be
made with caution.

3.8. Toxicity of microplastics and nanoplastics

Apart from the already adequately documented toxicity of the chemical moieties that may be
released from micro- and nanoplastics, the toxicity of the plastic particles themselves should be
considered. In general, after oral ingestion the largest fraction (> 90%) of the ingested micro- and
nanoplastics will be excreted via faeces. As described in Section 3.7, only plastic particles smaller than
150 lm (by definition the smallest microplastics and all nanoplastics) may translocate across the gut
epithelium, causing systemic exposure.

No peer-reviewed papers on in vivo or in vitro toxicity studies of microplastics or nanoplastics in
rodent species usually used for toxicity studies have been identified by the CONTAM Panel on which to
base risk assessment for humans.

An in vivo chicken model was used to study effects of nanoplastic particles on uptake of iron
(Mahler et al., 2012). A single dose of 2 mg/kg body weight (bw) of 50 nm carboxylated polystyrene
particles resulted in a threefold suppression of iron absorption. Interestingly, in chickens orally dosed
daily with the same polystyrene particles for 2 weeks prior to measurement of iron uptake, the iron
absorption was significantly higher than in the unexposed control birds. The 2 weeks of exposure also
caused an increase in the overall volume of villi in the duodenum and this was interpreted by the
authors as a compensatory response to an impairment of nutrient absorption and attributed to the
enhanced iron absorption (Mahler et al., 2012). In addition, exposure to 2 mg/kg bw per day resulted
in periportal accumulation of heterophils and increased density of lymphoid follicles with active
germinal centres in the spleen (Mahler et al., 2012). An in vitro study using human cell lines suggests
that positively charged polystyrene nanoplastic particles can disrupt intestinal iron uptake. Exposure of
a coculture of Caco-2 (enterocyte like), HT29-MTX (goblet cell like) and Raji B (M cell like) cells to
50 nm or 200 nm carboxylated polystyrene nanoplastic particles had large but complex effects on
transport of iron into and across the epithelial cell layer (Mahler et al., 2012). A concentration of
1.25 9 1012 particles/mL of the 200 nm polystyrene particles stimulated iron transfer across the cell
layer by 7.5-fold. Curiously, a lower exposure concentration (1.25 9 1010 particles/mL) reduced
transepithelial iron transport by about -1.7-fold. Exposure to 50 nm particles at 2 9 1013 particles/mL
caused a twofold increase in uptake of iron into the cells and a fivefold increase in the transfer of iron
across the epithelium. No effects were observed at lower concentrations of the 50 nm particles
(Mahler et al., 2012).

Some further information on toxicity of microplastics and nanoplastics can be found in reports on
studies of wild marine animals. Polystyrene microspheres ingested by mussels (M. edulis) were
translocated from the gut into the circulatory system and persisted for over 48 days, however, no
toxicological effects were observed despite the presence of microplastics in haemolymph and
haemocytes (Browne et al., 2008). Conversely, granulocytoma formation (inflammation), increased
number of haemocytes and decreased lysosomal stability were observed in mussels (M. edulis) 48 h,
after uptake of plastic particles (1–80 lm) into vacuoles in the digestive gland (GESAMP, 2010).
Rochman et al. (2014b) conducted a chronic 2-month dietary exposure study in Japanese medaka
(Oryzias latipes (rice fish)), using plastic pellets. Female fish exposed to PE pellets expressed
significantly less Chg H than the control. Della Torre et al. (2014) investigated disposition and toxicity
of two different polystyrene nanoparticles in the early development of sea urchin embryos
(Paracentrotus lividus). Embryos were exposed to either carboxylated polystyrene nanoparticles
(PS-COOH) (40 nm) or amino-modified polystyrene nanoparticles (PS-NH2; 50 nm). Differences in
disposition of the polystyrene nanoparticles were noted. PS-COOH accumulated inside the digestive
tracts of the embryos, while PS-NH2 was more dispersed. Exposure to PS-NH2 was reported to be
more embryotoxic compared to PS-COOH. Findings included thickening and abnormal proliferation of
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the ectodermal membrane, incorrect location, incomplete or broken skeletal rods and fractured
ectoderm. The authors suggest that the differences in the surface charge of the two polystyrene
nanoparticles may cause the differences noted in toxicity. In a study by Cole and Galloway (2015), in
pacific oyster larvae, no effects were noted on larval growth or feeding capacity, following 8 days of
exposure to PS-COOH or PS-NH2 (1 and 10 lm).

In addition to these effects studied, it may be expected that micro- and nanoplastics will most likely
interact with the immune system, not in the least because they can be taken up by phagocytic cells. In
a study in mussels (M. galloprovincialis), decreased phagocytic activity caused by nanoplastics has
been described (Canesi et al., 2015), but studies in other species are lacking. Although neither
nanoplastics nor microplastics are categorised as chemicals, they may eventually have similar health
outcomes involving the immune system, depending on the amount of the material that gains access to
the immune system. As for chemicals, immunotoxicity of micro- and nanoplastics may potentially be
associated with several adverse outcomes: 1) immunosuppression – decreased host resistance to
infectious agents and tumours; 2) immune activation – increased risk of developing allergic and
autoimmune diseases; and 3) abnormal inflammatory responses – unresolved inflammation – tissue or
organ damage and dysfunction. However, such effects have so far not been reported. Furthermore, it
may be expected that diseases related to GI tract could potentially be worsened, since most of the
particles will be deposited in the GI tract and may interact with bioprocesses at that site (Powell et al.,
2007; Handy et al., 2008), including those in microbiota.

Experiments in rodents on intraperitoneally injected or inhaled microplastics and nanoplastics beads
collectively show that they activate T-cells and are phagocytosed by macrophages, which traffic the
particles to the lymph nodes (e.g. Tomazic-Jezic et al., 2001; Blank et al., 2013). Some of these effects
have been corroborated by in vitro studies (Seydoux et al., 2014) and were more pronounced with
smaller plastic beads and differed between different polymers. Other potential effects based on in vitro
studies have been reviewed by Galloway (Galloway, 2015).

In contrast to nanoplastics, the toxicity of engineered nanomaterials, such as metal and metal oxide
particles, have been more widely studied and various toxic effects have been found, such as reactive
oxygen species (ROS) production and associated inflammation, liver and kidney damage, secondary
genotoxic effects and immune effects (reviewed by Bouwmeester et al., 2009). Again, extrapolations
from such studies on engineered nanomaterials should be made cautiously, because it is known that
toxicity depends on the chemical nature of the material along with size, shape, surface chemistry and
charge, and other aspects (reviewed by Bouwmeester et al., 2009).

In conclusion, because of a general lack of experimental data, the risk of toxicity of micro- and
nanoplastics after oral uptake in humans cannot be evaluated.

3.9. Observations in humans

No studies were identified that address the potential human health effects of microplastics ingested
by humans through the food chain.

In an investigation of the effects of coarse bran on small bowel transit time in adults, microplastic
beads (barium-labelled polyethylene (PE)) were used as a control. A single dose of 15 g PE in rice
pudding hastened the arrival of the label at the colon to the same degree as course bran (McIntyre
et al., 1997). Although this is a pronounced effect, the dose is highly unrealistic in terms of human
exposure through the food chain.

3.10. Uncertainties

Uncertainties are indicated throughout the text and the recommendations highlight areas that will
help to reduce these.

4. Conclusions

4.1. Microplastics

• There is no unambiguous and internationally recognised definition of microplastics and for the
purpose of this statement they are defined as a heterogeneous mixture of differently shaped
materials referred to as fragments, fibres, spheroids, granules, pellets, flakes or beads, in the
range of 0.1–5,000 lm.
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• Primary microplastics are plastics that were originally manufactured to be that size while
secondary microplastics originate from fragmentation of larger items, e.g. plastic debris.

• Plastic additives and adsorbed contaminants can be determined using universally accepted
analytical methods.

• The majority of information on microplastics concerns the marine environment.
• Experimental evidence indicates that microplastics have the potential to be transferred

between trophic levels.
• The digestive tract of marine organisms contains the largest quantities of microplastics.

However, this part is normally discarded before consumption. However, the digestive tract of
bivalves, e.g. mussels is eaten. As an example, a conservative estimate of exposure to
microplastics after consumption of a portion of mussels (225 g) would be 7 lg of plastics.

• Based on the above estimate and considering the highest concentrations of additives or
contaminants in the plastics reported and complete release from the microplastics, the portion
of mussels would have a small effect on the exposure to PCBs (increase < 0.006%), PAHs
(increase < 0.004%) and bisphenol A (increase < 2%).

• Only microplastics smaller than 150 lm may translocate across the gut epithelium causing
systemic exposure. The absorption of these microplastics is expected to be limited (≤ 0.3%).
Only the smallest fraction (size < 1.5 lm) may penetrate deeply into organs.

4.1.1. Datagaps

• Limited methods for identification and quantification are available. It should be noted that the
described methods for degradation of biogenic matter in foods all have drawbacks as they also
degrade the plastics to a certain degree.

• Only limited data are available on the occurrence of microplastics in foods. Available data are
from fish, bivalves, crustaceans, honey, beer and salt.

• The main plastic additives and adsorbed contaminants for which some information is available
comprise phthalates, bisphenol A, polybrominated diphenyl ethers, PAHs and PCBs.
Information on metals is scarce. Data on other chemical contaminants are lacking.

• There is a lack of information on the fate of micro- and nanoplastics in the GI tract. The
available data on toxicokinetics only include absorption and distribution, whereas no
information is available on metabolism and excretion.

• There are no data on the effect of food processing on microplastics.
• There is a lack of knowledge about the local effects of microplastics in the GI tract, including

microbiota.
• Toxicological data on the effects of microplastics as such, are essentially lacking for human risk

assessment.

4.2. Nanoplastics

• Based on the internationally recognised definition of nanomaterials, nanoplastics can be
defined as a material with any external dimension in the nanoscale or having internal structure
or surface structure in the nanoscale. Nanoscale is defined as ranging from approximately
1–100 nm (0.001–0.1 lm).

• Nanoplastics can be produced during fragmentation of microplastic debris and can originate
from engineered material used for example in industrial processes.

• It is not yet possible to extrapolate data from one nanomaterial to the other.

4.2.1. Datagaps

• No analytical methods exist for identification and quantification of nanoplastics in food, thus
data on the occurrence in foods are completely lacking.

• It is not known whether ingested microplastics can be degraded to nanoplastics in the GI tract.
• Nanoplastics can enter cells; the consequences for human health are unknown.
• Some engineered nanomaterials have shown toxic effects, however, toxicity data for

nanoplastics are essentially lacking for human risk assessment.
• For all other areas covered in this statement, there is also a lack of information with regards to

nanoplastics.
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5. Recommendations

5.1. Microplastics

• Analytical methods should be further developed and standardised, in order to assess their
presence, identity and to quantify their amount in food. Quality assurance should be in place
and demonstrated.

• Occurrence data in food, including effects of food processing, in particular for the smaller sized
particles (< 150 lm) should be generated in order to assess dietary exposure.

• Research on the toxicokinetics and toxicity, including studies on local effects in the GI tract,
are needed in particular for the smaller sized particles.

• Research on the degradation of microplastics and potential formation of nanoplastics in the
human GI tract are needed.

5.2. Nanoplastics

• Analytical methods should be developed and standardised, in order to assess their presence,
identity (including shape) and to quantify their amount in food. Quality assurance should be in
place and demonstrated.

• Occurrence data in food should be generated in order to assess dietary exposure.
• Research on the toxicokinetics and toxicity are needed.
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Abbreviations

AFM atomic force microscopy
BfR German Federal Institute for Risk Assessment
CONTAM Contaminants in the Food Chain
DDE 1,1-dichloro-2,2-bis(chlorophenyl)ethylene
DDD 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane
DDT 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane
DEHP di-(2-ethylhexyl) phthalate
DLS dynamic light scattering
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EDX energy dispersive X-ray spectrometry
FFF flow field fractionation
FP7 7th Research Framework Programme
FT-IR Fourier transform infrared spectrometry
GC/MS gas chromatography/mass spectrometry
GES Good Environmental Status
GESAMP The Joint Group of Experts on the Scientific Aspects of Marine Environmental protection
GI gastrointestinal
GPML Global partnership on Marine litter
HDC hydrodynamic chromatography
HDPE high-density polyethylene
ICES International Council for the Exploration of the sea
IR infrared
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemists
Kow octanol–water partition coefficient
LDPE low-density polyethylene
MALS multiangle light scattering
MEHP mono-(2-ethylhexyl) phthalate
MSFD Marine strategy framework directive
NCBI National Center for Biotechnology Information
NIH Department of the National Institutes of Health
NLM National Library of Medicine
NTA nanoparticle tracking analysis
OSPAR Oslo and Paris Commission
PAH polycyclic aromatic hydrocarbons
PCB polychlorinated biphenyls
PE polyethylene
PET polyethylene terephthalate
POP persistent organic pollutant
PP polypropylene
PS-COOH carboxylated polystyrene nanoparticles
PS-NH2 amino-modified polystyrene nanoparticles
PVC polyvinyl chloride
ROS reactive oxygen species
SEM scanning electron microscopy
TEM transmission electron microscopy
UNEP United Nations Environmental programme
UV ultraviolet
WoS Web of Science
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Appendix A – Literature search

Table A.1: Literature search terms

Chemistry and analysis

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (chemistry OR analysis OR determination OR detection OR identification OR formation OR
screening OR ELISA OR immune* OR GC OR GC-MS OR HPLC OR LC-MS OR ICP-MS)

Occurrence, Exposure

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (occurrence OR exposure OR assessment OR survey OR levels OR concentrate* OR marine
OR aquatic OR sea OR seawater OR organisms OR plankton OR seafood OR fish OR sardines OR
shrimp OR prawns OR crustacean OR bivalves OR mussels OR cephalopod OR squid OR octopus OR
mammal OR bird OR drinking water OR water OR bottled water OR beverage OR food OR vegetable*
OR fruit* OR grain OR cereal OR poultry OR chicken OR meat OR eggs OR milk OR pig OR feed OR
livestock OR cattle OR cow)

Contaminants/additives

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (POPs OR dioxins OR transport)

Processing

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (transport OR processing OR reduction OR cooking OR roasting OR frying OR boiling OR
baking OR storage OR storing OR brewing OR food OR beverage OR brewing)

Toxicokinetics

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (toxicokinetic* OR metabolism OR distribution OR excretion OR absorption OR distribution
OR biomarker OR mode of action OR biotransformation OR elimination OR reduction OR
detoxification OR transport)

Toxicity

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (toxicity OR toxi* OR acute OR subacute OR subchronic OR chronic OR mutagen* OR
carcino* OR genotox* OR reprotox* OR nephrotox* OR neurotox* OR hepatotox* OR immunotox*
OR immune* OR haemotox* OR hematotox* OR haematotox OR cytotox* OR develop* toxicity OR
thyroid OR endocri* OR endocrine OR estrogen OR oestrogen OR poisoning OR incidental poisoning
OR rat OR mouse OR lab animal OR animal* OR case studies)

Human studies

Search terms TOPIC: “plastic particle*” OR microplastic* OR “micro plastic*” OR “micro sized plastic*” “micro-sized
plastic* nanoplastic* OR “nano plastic*” OR “nano sized plastic*” “nano-sized plastic*”
AND
TOPIC: (human adverse effects OR human biomarker OR biological marker OR case studies OR
incidental poisoning OR poisoning OR human poisoning OR digestion)
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